This is an old revision of the document!


https://arxiv.org/pdf/1605.07571v2.pdf Sequential Neural Models with Stochastic Layers

How can we efficiently propagate uncertainty in a latent state representation with recurrent neural networks? This paper introduces stochastic recurrent neural networks which glue a deterministic recurrent neural network and a state space model together to form a stochastic and sequential neural generative model. The clear separation of deterministic and stochastic layers allows a structured variational inference network to track the factorization of the model’s posterior distribution. By retaining both the nonlinear recursive structure of a recurrent neural network and averaging over the uncertainty in a latent path, like a state space model, we improve the state of the art results on the Blizzard and TIMIT speech modeling data sets by a large margin, while achieving comparable performances to competing methods on polyphonic music modeling.

https://openreview.net/pdf?id=HJw8fAgA- Learning Dynamic State Abstractions for Model-Based Reinforcement Learning